Chapter 2

Fundamentals of the Mechanical Behavior of Materials

Questions

2.1 Can you calculate the percent elongation of materials based only on the information given in Fig. 2.6? Explain.

Recall that the percent elongation is defined by Eq. (2.6) on p. 33 and depends on the original gage length \(l_o \) of the specimen. From Fig. 2.6 on p. 37 only the necking strain (true and engineering) and true fracture strain can be determined. Thus, we cannot calculate the percent elongation of the specimen; also, note that the elongation is a function of gage length and increases with gage length.

2.2 Explain if it is possible for the curves in Fig. 2.4 to reach 0% elongation as the gage length is increased further.

The percent elongation of the specimen is a function of the initial and final gage lengths. When the specimen is being pulled, regardless of the original gage length, it will elongate uniformly (and permanently) until necking begins. Therefore, the specimen will always have a certain finite elongation. However, note that as the specimen’s gage length is increased, the contribution of localized elongation (that is, necking) will decrease, but the total elongation will not approach zero.

2.3 Explain why the difference between engineering strain and true strain becomes larger as strain increases. Is this phenomenon true for both tensile and compressive strains? Explain.

The difference between the engineering and true strains becomes larger because of the way the strains are defined, respectively, as can be seen by inspecting Eqs. (2.1) on p. 30 and (2.9) on p. 35. This is true for both tensile and compressive strains.

2.4 Using the same scale for stress, we note that the tensile true-stress-true-strain curve is higher than the engineering stress-strain curve. Explain whether this condition also holds for a compression test.

During a compression test, the cross-sectional area of the specimen increases as the specimen height decreases (because of volume constancy) as the load is increased. Since true stress is defined as ratio of the load to the instantaneous cross-sectional area of the specimen, the true stress in compression will be lower than the engineering stress for a given load, assuming that friction between the platens and the specimen is negligible.

2.5 Which of the two tests, tension or compression, requires a higher capacity testing machine than the other? Explain.

The compression test requires a higher capacity machine because the cross-sectional area of the
specimen increases during the test, which is the opposite of a tension test. The increase in area requires a load higher than that for the tension test to achieve the same stress level. Furthermore, note that compression-test specimens generally have a larger original cross-sectional area than those for tension tests, thus requiring higher forces.

2.6 Explain how the modulus of resilience of a material changes, if at all, as it is strained: (1) for an elastic, perfectly plastic material, and (2) for an elastic, linearly strain-hardening material.

2.7 If you pull and break a tension-test specimen rapidly, where would the temperature be the highest? Explain why.

Since temperature rise is due to the work input, the temperature will be highest in the necked region because that is where the strain, hence the energy dissipated per unit volume in plastic deformation, is highest.

2.8 Comment on the temperature distribution if the specimen in Question 2.7 is pulled very slowly.

If the specimen is pulled very slowly, the temperature generated will be dissipated throughout the specimen and to the environment. Thus, there will be no appreciable temperature rise anywhere, particularly with materials with high thermal conductivity.

2.9 In a tension test, the area under the true-stress-true-strain curve is the work done per unit volume (the specific work). We also know that the area under the load-elongation curve represents the work done on the specimen. If you divide this latter work by the volume of the specimen between the gage marks, you will determine the work done per unit volume (assuming that all deformation is confined between the gage marks). Will this specific work be the same as the area under the true-stress-true-strain curve? Explain. Will your answer be the same for any value of strain? Explain.

If we divide the work done by the total volume of the specimen between the gage lengths, we obtain the average specific work throughout the specimen. However, the area under the true stress-true strain curve represents the specific work done at the necked (and fractured) region in the specimen where the strain is a maximum.

Thus, the answers will be different. However, up to the onset of necking (instability), the specific work calculated will be the same. This is because the strain is uniform throughout the specimen until necking begins.

2.10 The note at the bottom of Table 2.5 states that as temperature increases, C decreases and m increases. Explain why.

The value of C in Table 2.5 on p. 43 decreases with temperature because it is a measure of the strength of the material. The value of m increases with temperature because the material becomes more strain-rate sensitive, due to the fact that the higher the strain rate, the less time the material has to recover and recrystallize, hence its strength increases.

2.11 You are given the K and n values of two different materials. Is this information sufficient to determine which material is tougher? If not, what additional information do you need, and why?

Although the K and n values may give a good estimate of toughness, the true fracture stress and the true strain at fracture are required for accurate calculation of toughness. The modulus of elasticity and yield stress would provide information about the area under the elastic region; however, this region is very small and is thus usually negligible with respect to the rest of the stress-strain curve.

2.12 Modify the curves in Fig. 2.7 to indicate the effects of temperature. Explain the reasons for your changes.

These modifications can be made by lowering the slope of the elastic region and lowering the general height of the curves. See, for example, Fig. 2.10 on p. 42.

2.13 Using a specific example, show why the deformation rate, say in m/s, and the true strain rate are not the same.

The deformation rate is the quantity v in Eqs. (2.14), (2.15), (2.17), and (2.18) on pp. 41-46. Thus, when v is held constant during de-
formation (hence a constant deformation rate), the true strain rate will vary, whereas the engineering strain rate will remain constant. Hence, the two quantities are not the same.

2.14 It has been stated that the higher the value of m, the more diffuse the neck is, and likewise, the lower the value of m, the more localized the neck is. Explain the reason for this behavior.

As discussed in Section 2.2.7 starting on p. 41, with high m values, the material stretches to a greater length before it fails; this behavior is an indication that necking is delayed with increasing m. When necking is about to begin, the necking region’s strength with respect to the rest of the specimen increases, due to strain hardening. However, the strain rate in the necking region is also higher than in the rest of the specimen, because the material is elongating faster there. Since the material in the necked region becomes stronger as it is strained at a higher rate, the region exhibits a greater resistance to necking. The increase in resistance to necking thus depends on the magnitude of m. As the tension test progresses, necking becomes more diffuse, and the specimen becomes longer before fracture; hence, total elongation increases with increasing values of m (Fig. 2.13 on p. 45). As expected, the elongation after necking (postuniform elongation) also increases with increasing m. It has been observed that the value of m decreases with metals of increasing strength.

2.15 Explain why materials with high m values (such as hot glass and silly putty) when stretched slowly, undergo large elongations before failure. Consider events taking place in the necked region of the specimen.

The answer is similar to Answer 2.14 above.

2.16 Assume that you are running four-point bending tests on a number of identical specimens of the same length and cross-section, but with increasing distance between the upper points of loading (see Fig. 2.21b). What changes, if any, would you expect in the test results? Explain.

As the distance between the upper points of loading in Fig. 2.21b on p. 51 increases, the magnitude of the bending moment decreases. However, the volume of material subjected to the maximum bending moment (hence to maximum stress) increases. Thus, the probability of failure in the four-point test increases as this distance increases.

2.17 Would Eq. (2.10) hold true in the elastic range? Explain.

Note that this equation is based on volume constancy, i.e., $A_o l_o = A l$. We know, however, that because the Poisson’s ratio ν is less than 0.5 in the elastic range, the volume is not constant in a tension test; see Eq. (2.47) on p. 69. Therefore, the expression is not valid in the elastic range.

2.18 Why have different types of hardness tests been developed? How would you measure the hardness of a very large object?

There are several basic reasons: (a) The overall hardness range of the materials; (b) the hardness of their constituents; see Chapter 3; (c) the thickness of the specimen, such as bulk versus foil; (d) the size of the specimen with respect to that of the indenter; and (e) the surface finish of the part being tested.

2.19 Which hardness tests and scales would you use for very thin strips of material, such as aluminum foil? Why?

Because aluminum foil is very thin, the indentations on the surface must be very small so as not to affect test results. Suitable tests would be a microhardness test such as Knoop or Vickers under very light loads (see Fig. 2.22 on p. 52). The accuracy of the test can be validated by observing any changes in the surface appearance opposite to the indented side.

2.20 List and explain the factors that you would consider in selecting an appropriate hardness test and scale for a particular application.

Hardness tests mainly have three differences:

(a) type of indenter,

(b) applied load, and

(c) method of indentation measurement (depth or surface area of indentation, or rebound of indenter).
The hardness test selected would depend on the estimated hardness of the workpiece, its size and thickness, and if an average hardness or the hardness of individual microstructural components is desired. For instance, the scleroscope, which is portable, is capable of measuring the hardness of large pieces which otherwise would be difficult or impossible to measure by other techniques.

The Brinell hardness measurement leaves a fairly large indentation which provides a good measure of average hardness, while the Knoop test leaves a small indentation that allows, for example, the determination of the hardness of individual phases in a two-phase alloy, as well as inclusions. The small indentation of the Knoop test also allows it to be useful in measuring the hardness of very thin layers on parts, such as plating or coatings. Recall that the depth of indentation should be small relative to part thickness, and that any change on the bottom surface appearance makes the test results invalid.

2.21 In a Brinell hardness test, the resulting impression is found to be an ellipse. Give possible explanations for this phenomenon.

There are several possible reasons for this phenomenon, but the two most likely are anisotropy in the material and the presence of surface residual stresses in the material.

2.21 Referring to Fig. 2.22 on p. 52, note that the material for indenters are either steel, tungsten carbide, or diamond. Why isn’t diamond used for all of the tests?

While diamond is the hardest material known, it would not, for example, be practical to make and use a 10-mm diamond indenter because the costs would be prohibitive. Consequently, a hard material such as those listed are sufficient for most hardness tests.

2.22 What effect, if any, does friction have in a hardness test? Explain.

The effect of friction has been found to be minimal. In a hardness test, most of the indentation occurs through plastic deformation, and there is very little sliding at the indenter-workpiece interface; see Fig. 2.25 on p. 53.

2.23 Describe the difference between creep and stress-relaxation phenomena, giving two examples for each as they relate to engineering applications.

Creep is the permanent deformation of a part that is under a load over a period of time, usually occurring at elevated temperatures. Stress relaxation is the decrease in the stress level in a part under a constant strain. Examples of creep include:

(a) turbine blades operating at high temperatures, and

(b) high-temperature steam lines and furnace components.

Stress relaxation is observed when, for example, a rubber band or a thermoplastic is pulled to a specific length and held at that length for a period of time. This phenomenon is commonly observed in rivets, bolts, and guy wires, as well as thermoplastic components.

2.24 Referring to the two impact tests shown in Fig. 2.31, explain how different the results would be if the specimens were impacted from the opposite directions.

Note that impacting the specimens shown in Fig. 2.31 on p. 60 from the opposite directions would subject the roots of the notches to compressive stresses, and thus they would not act as stress raisers. Thus, cracks would not propagate as they would when under tensile stresses. Consequently, the specimens would basically behave as if they were not notched.

2.25 If you remove layer ad from the part shown in Fig. 2.30d, such as by machining or grinding, which way will the specimen curve? (Hint: Assume that the part in diagram (d) can be modeled as consisting of four horizontal springs held at the ends. Thus, from the top down, we have compression, tension, compression, and tension springs.)

Since the internal forces will have to achieve a state of static equilibrium, the new part has to bow downward (i.e., it will hold water). Such residual-stress patterns can be modeled with a set of horizontal tension and compression.
2.26 Is it possible to completely remove residual stresses in a piece of material by the technique described in Fig. 2.32 if the material is elastic, linearly strain hardening? Explain.

By following the sequence of events depicted in Fig. 2.32 on p. 61, it can be seen that it is not possible to completely remove the residual stresses. Note that for an elastic, linearly strain hardening material, σ'_e will never catch up with σ'_t.

2.27 Referring to Fig. 2.32, would it be possible to eliminate residual stresses by compression instead of tension? Assume that the piece of material will not buckle under the uniaxial compressive force.

Yes, by the same mechanism described in Fig. 2.32 on p. 61.

2.28 List and explain the desirable mechanical properties for the following: (1) elevator cable, (2) bandage, (3) shoe sole, (4) fish hook, (5) automotive piston, (6) boat propeller, (7) gas-turbine blade, and (8) staple.

The following are some basic considerations:

(a) Elevator cable: The cable should not elongate elastically to a large extent or undergo yielding as the load is increased. These requirements thus call for a material with a high elastic modulus and yield stress.

(b) Bandage: The bandage material must be compliant, that is, have a low stiffness, but have high strength in the membrane direction. Its inner surface must be permeable and outer surface resistant to environmental effects.

(c) Shoe sole: The sole should be compliant for comfort, with a high resilience. It should be tough so that it absorbs shock and should have high friction and wear resistance.

(d) Fish hook: A fish hook needs to have high strength so that it doesn’t deform permanently under load, and thus maintain its shape. It should be stiff (for better control during its use) and should be resistant to corrosion due to oxidation and abrasion because the propeller encounters sand and other abrasive particles when operated close to shore.

(g) Gas turbine blade: A gas turbine blade operates at high temperatures (depending on its location in the turbine); thus it should have high-temperature strength and resistance to creep, as well as to oxidation and corrosion due to combustion products during its use.

(h) Staple: The properties should be closely parallel to that of a paper clip. The staple should have high ductility to allow it to be deformed without fracture, and also have low yield stress so that it can be bent (as well as unbent when removing it) easily without requiring excessive force.

2.29 Make a sketch showing the nature and distribution of the residual stresses in Figs. 2.31a and b before the parts were split (cut). Assume that the split parts are free from any stresses. (Hint: Force these parts back to the shape they were in before they were cut.)

As the question states, when we force back the split portions in the specimen in Fig. 2.31a on p. 60, we induce tensile stresses on the outer surfaces and compressive on the inner. Thus the original part would, along its total cross section, have a residual stress distribution of tension-compression-tension. Using the same technique, we find that the specimen in Fig. 2.31b would have a similar residual stress distribution prior to cutting.

2.30 It is possible to calculate the work of plastic deformation by measuring the temperature rise...
in a workpiece, assuming that there is no heat loss and that the temperature distribution is uniform throughout. If the specific heat of the material decreases with increasing temperature, will the work of deformation calculated using the specific heat at room temperature be higher or lower than the actual work done? Explain.

If we calculate the heat using a constant specific heat value in Eq. (2.65) on p. 73, the work will be higher than it actually is. This is because, by definition, as the specific heat decreases, less work is required to raise the workpiece temperature by one degree. Consequently, the calculated work will be higher than the actual work done.

2.31 Explain whether or not the volume of a metal specimen changes when the specimen is subjected to a state of (a) uniaxial compressive stress and (b) uniaxial tensile stress, all in the elastic range.

For case (a), the quantity in parentheses in Eq. (2.47) on p. 69 will be negative, because of the compressive stress. Since the rest of the terms are positive, the product of these terms is negative and, hence, there will be a decrease in volume (This can also be deduced intuitively.) For case (b), it will be noted that the volume will increase.

2.32 We know that it is relatively easy to subject a specimen to hydrostatic compression, such as by using a chamber filled with a liquid. Devise a means whereby the specimen (say, in the shape of a cube or a thin round disk) can be subjected to hydrostatic tension, or one approaching this state of stress. (Note that a thin-walled, internally pressurized spherical shell is not a correct answer, because it is subjected only to a state of plane stress.)

Two possible answers are the following:

(a) A solid cube made of a soft metal has all its six faces brazed to long square bars (of the same cross section as the specimen); the bars are made of a stronger metal. The six arms are then subjected to equal tension forces, thus subjecting the cube to equal tensile stresses.

(b) A thin, solid round disk (such as a coin) and made of a soft material is brazed between the ends of two solid round bars of the same diameter as that of the disk. When subjected to longitudinal tension, the disk will tend to shrink radially. But because it is thin and its flat surfaces are restrained by the two rods from moving, the disk will be subjected to tensile radial stresses. Thus, a state of triaxial (though not exactly hydrostatic) tension will exist within the thin disk.

2.33 Referring to Fig. 2.19, make sketches of the state of stress for an element in the reduced section of the tube when it is subjected to (1) torsion only, (2) torsion while the tube is internally pressurized, and (3) torsion while the tube is externally pressurized. Assume that the tube is closed end.

These states of stress can be represented simply by referring to the contents of this chapter as well as the relevant materials covered in texts on mechanics of solids.

2.34 A penny-shaped piece of soft metal is brazed to the ends of two flat, round steel rods of the same diameter as the piece. The assembly is then subjected to uniaxial tension. What is the state of stress to which the soft metal is subjected? Explain.

The penny-shaped soft metal piece will tend to contract radially due to the Poisson’s ratio; however, the solid rods to which it attached will prevent this from happening. Consequently, the state of stress will tend to approach that of hydrostatic tension.

2.35 A circular disk of soft metal is being compressed between two flat, hardened circular steel punches having the same diameter as the disk. Assume that the disk material is perfectly plastic and that there is no friction or any temperature effects. Explain the change, if any, in the magnitude of the punch force as the disk is being compressed plastically to, say, a fraction of its original thickness.

Note that as it is compressed plastically, the disk will expand radially, because of volume constancy. An approximately donut-shaped
material will then be pushed radially outward, which will then exert radial compressive stresses on the disk volume under the punches. The volume of material directly between the punches will now subjected to a triaxial compressive state of stress. According to yield criteria (see Section 2.11), the compressive stress exerted by the punches will thus increase, even though the material is not strain hardening. Therefore, the punch force will increase as deformation increases.

2.36 A perfectly plastic metal is yielding under the stress state \(\sigma_1, \sigma_2, \sigma_3 \), where \(\sigma_1 > \sigma_2 > \sigma_3 \). Explain what happens if \(\sigma_1 \) is increased.

Consider Fig. 2.36 on p. 67. Points in the interior of the yield locus are in an elastic state, whereas those on the yield locus are in a plastic state. Points outside the yield locus are not admissible. Therefore, an increase in \(\sigma_1 \) while the other stresses remain unchanged would require an increase in yield stress. This can also be deduced by inspecting either Eq. (2.36) or Eq. (2.37) on p. 64.

2.37 What is the dilatation of a material with a Poisson’s ratio of 0.5? Is it possible for a material to have a Poisson’s ratio of 0.7? Give a rationale for your answer.

It can be seen from Eq. (2.47) on p. 69 that the dilatation of a material with \(\nu = 0.5 \) is always zero, regardless of the stress state. To examine the case of \(\nu = 0.7 \), consider the situation where the stress state is hydrostatic tension. Equation (2.47) would then predict contraction under a tensile stress, a situation that cannot occur.

2.38 Can a material have a negative Poisson’s ratio? Explain.

Solid material do not have a negative Poisson’s ratio, with the exception of some composite materials (see Chapter 10), where there can be a negative Poisson’s ratio in a given direction.

2.39 As clearly as possible, define plane stress and plane strain.

Plane stress is the situation where the stresses in one of the direction are zero; plane strain is the situation where the strains in one of the direction are zero.

2.40 What test would you use to evaluate the hardness of a coating on a metal surface? Would it matter if the coating was harder or softer than the substrate? Explain.

The answer depends on whether the coating is relatively thin or thick. For a relatively thick coating, conventional hardness tests can be conducted, as long as the deformed region under the indenter is less than about one-tenth of the coating thickness. If the coating thickness is less than this threshold, then one must either rely on nontraditional hardness tests, or else use fairly complicated indentation models to extract the material behavior. As an example of the former, atomic force microscopes using diamond-tipped pyramids have been used to measure the hardness of coatings less than 100 nanometers thick. As an example of the latter, finite-element models of a coated substrate being indented by an indenter of a known geometry can be developed and then correlated to experiments.

2.41 List the advantages and limitations of the stress-strain relationships given in Fig. 2.7.

Several answers that are acceptable, and the student is encouraged to develop as many as possible. Two possible answers are: (1) there is a tradeoff between mathematical complexity and accuracy in modeling material behavior and (2) some materials may be better suited for certain constitutive laws than others.

2.42 Plot the data in Table 2.1 on a bar chart, showing the range of values, and comment on the results.

By the student. An example of a bar chart for the elastic modulus is shown below.
Typical comments regarding such a chart are:

(a) There is a smaller range for metals than for non-metals;
(b) Thermoplastics, thermosets and rubbers are orders of magnitude lower than metals and other non-metals;
(c) Diamond and ceramics can be superior to others, but ceramics have a large range of values.

2.43 A hardness test is conducted on as-received metal as a quality check. The results indicate that the hardness is too high, thus the material may not have sufficient ductility for the intended application. The supplier is reluctant to accept the return of the material, instead claiming that the diamond cone used in the Rockwell testing was worn and blunt, and hence the test needed to be recalibrated. Is this explanation plausible? Explain.

Refer to Fig. 2.22 on p. 52 and note that if an indenter is blunt, then the penetration, \(t \), under a given load will be smaller than that using a sharp indenter. This then translates into a higher hardness. The explanation is plausible, but in practice, hardness tests are fairly reliable and measurements are consistent if the testing equipment is properly calibrated and routinely serviced.

2.44 Explain why a 0.2% offset is used to determine the yield strength in a tension test.

The value of 0.2% is somewhat arbitrary and is used to set some standard. A yield stress, representing the transition point from elastic to plastic deformation, is difficult to measure. This is because the stress-strain curve is not linearly proportional after the proportional limit, which can be as high as one-half the yield strength in some metals. Therefore, a transition from elastic to plastic behavior in a stress-strain curve is difficult to discern. The use of a 0.2% offset is a convenient way of consistently interpreting a yield point from stress-strain curves.

2.45 Referring to Question 2.44, would the offset method be necessary for a highly-strained-hardened material? Explain.

The 0.2% offset is still advisable whenever it can be used, because it is a standardized approach for determining yield stress, and thus one should not arbitrarily abandon standards. However, if the material is highly cold worked, there will be a more noticeable ‘kink’ in the stress-strain curve, and thus the yield stress is far more easily discernable than for the same material in the annealed condition.
Problems

2.46 A strip of metal is originally 1.5 m long. It is stretched in three steps: first to a length of 1.75 m, then to 2.0 m, and finally to 3.0 m. Show that the total true strain is the sum of the true strains in each step, that is, that the strains are additive. Show that, using engineering strains, the strain for each step cannot be added to obtain the total strain.

The true strain is given by Eq. (2.9) on p. 35 as

$$e = \ln \left(\frac{l}{l_0} \right)$$

Therefore, the true strains for the three steps are:

$$\epsilon_1 = \ln \left(\frac{1.75}{1.5} \right) = 0.1541$$

$$\epsilon_2 = \ln \left(\frac{2.0}{1.75} \right) = 0.1335$$

$$\epsilon_3 = \ln \left(\frac{3.0}{2.0} \right) = 0.4055$$

The sum of these true strains is $\epsilon = 0.1541 + 0.1335 + 0.4055 = 0.6931$. The true strain from step 1 to 3 is

$$e = \ln \left(\frac{3}{1.5} \right) = 0.6931$$

Therefore the true strains are additive. Using the same approach for engineering strain as defined by Eq. (2.1), we obtain $\epsilon_1 = 0.1667$, $\epsilon_2 = 0.1429$, and $\epsilon_3 = 0.5$. The sum of these strains is $\epsilon_1 + \epsilon_2 + \epsilon_3 = 0.8096$. The engineering strain from step 1 to 3 is

$$e = \frac{l - l_0}{l_0} = \frac{3 - 1.5}{1.5} = \frac{1.5}{1.5} = 1$$

Note that this is not equal to the sum of the engineering strains for the individual steps.

2.47 A paper clip is made of wire 1.20-mm in diameter. If the original material from which the wire is made is a rod 15-mm in diameter, calculate the longitudinal and diametrical engineering and true strains that the wire has undergone.

Assuming volume constancy, we may write

$$\frac{l_f}{l_o} = \left(\frac{d_o}{d_f} \right)^2 = \left(\frac{15}{1.20} \right)^2 = 156.25 \approx 156$$

Letting l_0 be unity, the longitudinal engineering strain is $\epsilon_1 = (156 - 1)/1 = 155$. The diametral engineering strain is calculated as

$$\epsilon_d = \frac{1.2 - 15}{15} = -0.92$$

The longitudinal true strain is given by Eq. (2.9) on p. 35 as

$$\epsilon = \ln \left(\frac{l}{l_0} \right) = \ln (155) = 5.043$$

The diametral true strain is

$$\epsilon_d = \ln \left(\frac{1.20}{15} \right) = -2.526$$

Note the large difference between the engineering and true strains, even though both describe the same phenomenon. Note also that the sum of the true strains (recognizing that the radial strain is $\epsilon_r = \ln \left(\frac{0.66}{0.72} \right) = -2.526$) in the three principal directions is zero, indicating volume constancy in plastic deformation.

2.48 A material has the following properties: UTS = 50,000 psi and $n = 0.25$. Calculate its strength coefficient K.

Let us first note that the true UTS of this material is given by $UTS_{true} = Kn^n$ (because at necking $\epsilon = n$). We can then determine the value of this stress from the UTS by following a procedure similar to Example 2.1. Since $n = 0.25$, we can write

$$UTS_{true} = UTS \left(\frac{A_o}{A_{neck}} \right) = UTS \left(e^{0.25} \right) = (50,000)(1.28) = 64,200 \text{ psi}$$

Therefore, since $UTS_{true} = Kn^n$,

$$K = \frac{UTS_{true}}{n^n} = \frac{64,200}{0.25^{0.25}} = 90,800 \text{ psi}$$
2.49 Based on the information given in Fig. 2.6, calculate the ultimate tensile strength of annealed 70-30 brass.

From Fig. 2.6 on p. 37, the true stress for annealed 70-30 brass at necking (where the slope becomes constant; see Fig. 2.7a on p. 40) is found to be about 60,000 psi, while the true strain is about 0.2. We also know that the ratio of the original to necked areas of the specimen is given by

\[
\ln\left(\frac{A_o}{A_{\text{neck}}}\right) = 0.20
\]

or

\[
\frac{A_{\text{neck}}}{A_o} = e^{-0.20} = 0.819
\]

Thus,

\[
\text{UTS} = (60,000)(0.819) = 49,100 \text{ psi}
\]

2.50 Calculate the ultimate tensile strength (engineering) of a material whose strength coefficient is 400 MPa and of a tensile-test specimen that necks at a true strain of 0.20.

In this problem we have \(K = 400 \text{ MPa}\) and \(n = 0.20\). Following the same procedure as in Example 2.1, we find the true ultimate tensile strength is

\[
\sigma = (400)(0.20)^{0.20} = 290 \text{ MPa}
\]

and

\[
A_{\text{neck}} = A_o e^{-0.20} = 0.81 A_o
\]

Consequently,

\[
\text{UTS} = (290)(0.81) = 237 \text{ MPa}
\]

2.51 A cable is made of four parallel strands of different materials, all behaving according to the equation \(\sigma = K \epsilon^n\), where \(n = 0.3\). The materials, strength coefficients, and cross sections are as follows:

<table>
<thead>
<tr>
<th>Material</th>
<th>(K) (MPa)</th>
<th>(A_o) (mm(^2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>450</td>
<td>7</td>
</tr>
<tr>
<td>B</td>
<td>600</td>
<td>2.5</td>
</tr>
<tr>
<td>C</td>
<td>300</td>
<td>3</td>
</tr>
<tr>
<td>D</td>
<td>760</td>
<td>2</td>
</tr>
</tbody>
</table>

\[
A_{\text{neck}} = A_o e^{-0.1} = 1.1
\]

(a) Calculate the maximum tensile load that this cable can withstand prior to necking.

(b) Explain how you would arrive at an answer if the \(n\) values of the three strands were different from each other.

(a) Necking will occur when \(\epsilon = n = 0.3\). At this point the true stresses in each cable are (from \(\sigma = K \epsilon^n\)), respectively,

\[
\sigma_A = (450)(0.3)^{0.3} = 314 \text{ MPa}
\]

\[
\sigma_B = (600)(0.3)^{0.3} = 418 \text{ MPa}
\]

\[
\sigma_C = (300)(0.3)^{0.3} = 209 \text{ MPa}
\]

\[
\sigma_D = (760)(0.3)^{0.3} = 530 \text{ MPa}
\]

The areas at necking are calculated as follows (from \(A_{\text{neck}} = A_o e^{-n}\)):

\[
A_A = (7)e^{-0.3} = 5.18 \text{ mm}^2
\]

\[
A_B = (2.5)e^{-0.3} = 1.85 \text{ mm}^2
\]

\[
A_C = (3)e^{-0.3} = 2.22 \text{ mm}^2
\]

\[
A_D = (2)e^{-0.3} = 1.48 \text{ mm}^2
\]

Hence the total load that the cable can support is

\[
P = (314)(5.18) + (418)(1.85) + (209)(2.22) + (530)(1.48) = 3650 \text{ N}
\]

(b) If the \(n\) values of the four strands were different, the procedure would consist of plotting the load-elongation curves of the four strands on the same chart, then obtaining graphically the maximum load. Alternatively, a computer program can be written to determine the maximum load.

2.52 Using only Fig. 2.6, calculate the maximum load in tension testing of a 304 stainless-steel round specimen with an original diameter of 0.5 in.

We observe from Fig. 2.6 on p. 37 that necking begins at a true strain of about 0.1, and that the true UTS is about 110,000 psi. The original cross-sectional area is \(A_o = \pi(0.25 \text{ in})^2 = 0.196 \text{ in}^2\). Since \(n = 0.1\), we follow a procedure similar to Example 2.1 and show that

\[
A_o = 1.1 A_{\text{neck}}
\]
Thus

\[UTS = \frac{110,000}{1.1} = 100,000 \text{ psi} \]

Hence the maximum load is

\[F = (UTS)(A_o) = (100,000)(0.196) \]

or \[F = 19,600 \text{ lb.} \]

2.53 Using the data given in Table 2.1, calculate the values of the shear modulus \(G \) for the metals listed in the table.

The important equation is Eq. (2.24) on p. 49 which gives the shear modulus as

\[G = \frac{E}{2(1+\nu)} \]

The following values can be calculated (mid-range values of \(\nu \) are taken as appropriate):

<table>
<thead>
<tr>
<th>Material</th>
<th>(E) (GPa)</th>
<th>(\nu)</th>
<th>(G) (GPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al & alloys</td>
<td>69-79</td>
<td>0.32</td>
<td>26-30</td>
</tr>
<tr>
<td>Cu & alloys</td>
<td>105-150</td>
<td>0.34</td>
<td>39-56</td>
</tr>
<tr>
<td>Pb & alloys</td>
<td>14</td>
<td>0.43</td>
<td>4.9</td>
</tr>
<tr>
<td>Mg & alloys</td>
<td>41-45</td>
<td>0.32</td>
<td>15.5-17.0</td>
</tr>
<tr>
<td>Mo & alloys</td>
<td>330-360</td>
<td>0.32</td>
<td>125-136</td>
</tr>
<tr>
<td>Ni & alloys</td>
<td>180-214</td>
<td>0.31</td>
<td>69-82</td>
</tr>
<tr>
<td>Steels</td>
<td>190-200</td>
<td>0.30</td>
<td>73-77</td>
</tr>
<tr>
<td>Stainless steels</td>
<td>190-200</td>
<td>0.29</td>
<td>74-77</td>
</tr>
<tr>
<td>Ti & alloys</td>
<td>80-130</td>
<td>0.32</td>
<td>30-49</td>
</tr>
<tr>
<td>W & alloys</td>
<td>350-400</td>
<td>0.27</td>
<td>138-157</td>
</tr>
<tr>
<td>Ceramics</td>
<td>70-1000</td>
<td>0.2</td>
<td>29-417</td>
</tr>
<tr>
<td>Glass</td>
<td>70-80</td>
<td>0.24</td>
<td>28-32</td>
</tr>
<tr>
<td>Rubbers</td>
<td>0.01-0.1</td>
<td>0.5</td>
<td>0.0033-0.033</td>
</tr>
<tr>
<td>Thermoplastics</td>
<td>1.4-3.4</td>
<td>0.36</td>
<td>0.51-1.25</td>
</tr>
<tr>
<td>Thermosets</td>
<td>3.5-17</td>
<td>0.34</td>
<td>1.3-6.34</td>
</tr>
</tbody>
</table>

2.54 Derive an expression for the toughness of a material whose behavior is represented by the equation \(\sigma = K(\epsilon + 0.2)^n \) and whose fracture strain is denoted as \(\epsilon_f \).

Recall that toughness is the area under the stress-strain curve, hence the toughness for this material would be given by

\[
\text{Toughness} = \int_{0}^{\epsilon_f} \sigma \, d\epsilon \\
= \int_{0}^{\epsilon_f} K(\epsilon + 0.2)^n \, d\epsilon \\
= \frac{K}{n+1} \left[(\epsilon_f + 0.2)^{n+1} - 0.2^{n+1} \right]
\]

2.55 A cylindrical specimen made of a brittle material 1 in. high and with a diameter of 1 in. is subjected to a compressive force along its axis. It is found that fracture takes place at an angle of 45° under a load of 30,000 lb. Calculate the shear stress and the normal stress acting on the fracture surface.

Assuming that compression takes place without friction, note that two of the principal stresses will be zero. The third principal stress acting on this specimen is normal to the specimen and its magnitude is

\[\sigma_3 = \frac{30,000}{\pi(0.5)^2} = 38,200 \text{ psi} \]

The Mohr’s circle for this situation is shown below.

The fracture plane is oriented at an angle of 45°, corresponding to a rotation of 90° on the Mohr’s circle. This corresponds to a stress state on the fracture plane of \(\sigma = -19,100 \text{ psi} \) and \(\tau = 19,100 \text{ psi} \).

2.56 What is the modulus of resilience of a highly cold-worked piece of steel with a hardness of 300 HB? Of a piece of highly cold-worked copper with a hardness of 150 HB?

Referring to Fig. 2.24 on p. 55, the value of \(c \) in Eq. (2.29) on p. 54 is approximately 3.2 for highly cold-worked steels and around 3.4 for cold-worked aluminum. Therefore, we can approximate \(c = 3.3 \) for cold-worked copper. However, since the Brinell hardness is in units of kg/mm², from Eq. (2.29) we can write

\[T_{\text{steel}} = \frac{H}{3.2} = \frac{300}{3.2} = 93.75 \text{ kg/mm}^2 = 133 \text{ ksi} \]

\[T_{\text{Cu}} = \frac{H}{3.3} = \frac{150}{3.3} = 45.5 \text{ kg/mm}^2 = 64.6 \text{ ksi} \]
From Table 2.1, \(E_{\text{steel}} = 30 \times 10^6 \) psi and \(E_{\text{Cu}} = 15 \times 10^6 \) psi. The modulus of resilience is calculated from Eq. (2.5). For steel:

\[
\text{Modulus of Resilience} = \frac{Y^2}{2E} = \frac{(133,000)^2}{2(30 \times 10^6)}
\]

or a modulus of resilience for steel of 295 in-lb/in³. For copper,

\[
\text{Modulus of Resilience} = \frac{Y^2}{2E} = \frac{(62,200)^2}{2(15 \times 10^6)}
\]

or a modulus of resilience for copper of 129 in-lb/in³.

Note that these values are slightly different than the values given in the text; this is due to the fact that (a) highly cold-worked metals such as these have a much higher yield stress than the annealed materials described in the text, and (b) arbitrary property values are given in the statement of the problem.

2.57 Calculate the work done in frictionless compression of a solid cylinder 40 mm high and 15 mm in diameter to a reduction in height of 75% for the following materials: (1) 1100-O aluminum, (2) annealed copper, (3) annealed 304 stainless steel, and (4) 70-30 brass, annealed.

The work done is calculated from Eq. (2.62) on p. 71 where the specific energy, \(u \), is obtained from Eq. (2.60). Since the reduction in height is 75%, the final height is 10 mm and the absolute value of the true strain is

\[
\epsilon = \ln \left(\frac{40}{10} \right) = 1.386
\]

\(K \) and \(n \) are obtained from Table 2.3 as follows:

<table>
<thead>
<tr>
<th>Material</th>
<th>(K) (MPa)</th>
<th>(n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1100-O Al</td>
<td>180</td>
<td>0.20</td>
</tr>
<tr>
<td>Cu, annealed</td>
<td>315</td>
<td>0.54</td>
</tr>
<tr>
<td>304 Stainless, annealed</td>
<td>1300</td>
<td>0.30</td>
</tr>
<tr>
<td>70-30 brass, annealed</td>
<td>895</td>
<td>0.49</td>
</tr>
</tbody>
</table>

The \(u \) values are then calculated from Eq. (2.60). For example, for 1100-O aluminum, where \(K \) is 180 MPa and \(n \) is 0.20, \(u \) is calculated as

\[
u = \frac{K^n}{n+1} = \frac{(180)(1.386)^{1.2}}{1.2} = 222 \text{ MN/m}^3
\]

The volume is calculated as \(V = \pi r^2 l = \pi(0.0075)^2(0.04) = 7.069 \times 10^{-6} \text{ m}^3 \). The work done is the product of the specific work, \(u \), and the volume, \(V \). Therefore, the results can be tabulated as follows.

<table>
<thead>
<tr>
<th>Material</th>
<th>(u) (MN/m³)</th>
<th>Work (Nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1100-O Al</td>
<td>222</td>
<td>1562</td>
</tr>
<tr>
<td>Cu, annealed</td>
<td>338</td>
<td>2391</td>
</tr>
<tr>
<td>304 Stainless, annealed</td>
<td>1529</td>
<td>10,808</td>
</tr>
<tr>
<td>70-30 brass, annealed</td>
<td>977</td>
<td>6908</td>
</tr>
</tbody>
</table>

2.58 A material has a strength coefficient \(K = 100,000 \text{ psi} \). Assuming that a tensile-test specimen made from this material begins to neck at a true strain of 0.17, show that the ultimate tensile strength of this material is 62,400 psi.

The approach is the same as in Example 2.1. Since the necking strain corresponds to the maximum load and the necking strain for this material is given as \(\epsilon = n = 0.17 \), we have, as the true ultimate tensile strength:

\[
\text{UTS}_{\text{true}} = (100,000)(0.17)^{0.17} = 74,000 \text{ psi}
\]

The cross-sectional area at the onset of necking is obtained from

\[
\ln \left(\frac{A_o}{A_{\text{neck}}} \right) = n = 0.17
\]

Consequently,

\[
A_{\text{neck}} = A_o e^{-0.17}
\]

and the maximum load, \(P \), is

\[
P = \sigma A = (\text{UTS}_{\text{true}})A_o e^{-0.17} = (74,000)(0.844)(A_o) = 62,400 A_o \text{ lb}
\]

Since \(\text{UTS} = P/A_o \), we have \(\text{UTS} = 62,400 \text{ psi} \).

2.59 A tensile-test specimen is made of a material represented by the equation \(\sigma = K(\epsilon + n)^n \).

(a) Determine the true strain at which necking will begin. (b) Show that it is possible for an engineering material to exhibit this behavior.
(a) In Section 2.2.4 on p. 38 we noted that instability, hence necking, requires the following condition to be fulfilled:

\[\frac{d\sigma}{d\epsilon} = \sigma \]

Consequently, for this material we have

\[Kn (\epsilon + n)^{n-1} = K (\epsilon + n)^n \]

This is solved as \(n = 0 \); thus necking begins as soon as the specimen is subjected to tension.

(b) Yes, this behavior is possible. Consider a tension-test specimen that has been strained to necking and then unloaded. Upon loading it again in tension, it will immediately begin to neck.

2.60 Take two solid cylindrical specimens of equal diameter but different heights. Assume that both specimens are compressed (frictionless) by the same percent reduction, say 50%. Prove that the final diameters will be the same.

Let’s identify the shorter cylindrical specimen with the subscript \(s \) and the taller one as \(t \), and their original diameter as \(D \). Subscripts \(f \) and \(o \) indicate final and original, respectively. Because both specimens undergo the same percent reduction in height, we can write

\[\frac{h_{sf}}{h_{so}} = \frac{h_{tf}}{h_{to}} \]

and from volume constancy,

\[\frac{h_{tf}}{h_{to}} = \left(\frac{D_{to}}{D_{tf}} \right)^2 \]

and

\[\frac{h_{sf}}{h_{so}} = \left(\frac{D_{so}}{D_{sf}} \right)^2 \]

Because \(D_{to} = D_{so} \), we note from these relationships that \(D_{tf} = D_{sf} \).

2.61 A horizontal rigid bar \(c-c \) is subjecting specimen \(a \) to tension and specimen \(b \) to frictionless compression such that the bar remains horizontal. (See the accompanying figure.) The force \(F \) is located at a distance ratio of 2:1. Both specimens have an original cross-sectional area of 1 in\(^2\) and the original lengths are \(a = 8 \) in. and \(b = 4.5 \) in. The material for specimen \(a \) has a true-stress-true-strain curve of \(\sigma = 100,000e^{0.5} \). Plot the true-stress-true-strain curve of material for specimen \(b \) should have for the bar to remain horizontal during the experiment.

From the equilibrium of vertical forces and to keep the bar horizontal, we note that \(2F_a = F_b \). Hence, in terms of true stresses and instantaneous areas, we have

\[2\sigma_a A_a = \sigma_b A_b \]

From volume constancy we also have, in terms of original and final dimensions

\[A_{oa} L_{oa} = A_a L_a \]

and

\[A_{ob} L_{ob} = A_b L_b \]

where \(L_{oa} = (8/4.5) L_{ob} = 1.78 L_{ob} \). From these relationships we can show that

\[\sigma_b = 2 \left(\frac{8}{4.5} \right) K \sigma_a \left(\frac{L_b}{L_a} \right) \]

Since \(\sigma_a = K\epsilon_a^{0.5} \) where \(K = 100,000 \) psi, we can now write

\[\sigma_b = \left(\frac{16K}{4.5} \right) \left(\frac{L_b}{L_a} \right) \sqrt{\epsilon_a} \]

Hence, for a deflection of \(x \),

\[\sigma_b = \left(\frac{16K}{4.5} \right) \left(\frac{4.5 - x}{8 + x} \right) \sqrt{\ln \left(\frac{8 + x}{8} \right)} \]

The true strain in specimen \(b \) is given by

\[\epsilon_b = \ln \left(\frac{4.5 - x}{4.5} \right) \]

By inspecting the figure in the problem statement, we note that while specimen \(a \) gets...
longer, it will continue exerting some force F_a. However, specimen b will eventually acquire a cross-sectional area that will become infinite as x approaches 4.5 in., thus its strength must approach zero. This observation suggests that specimen b cannot have a true stress-true strain curve typical of metals, and that it will have a maximum at some strain. This is seen in the plot of σ_b shown below.

2.62 Inspect the curve that you obtained in Problem 2.61. Does a typical strain-hardening material behave in that manner? Explain.

Based on the discussions in Section 2.2.3 starting on p. 35, it is obvious that ordinary metals would not normally behave in this manner. However, under certain conditions, the following could explain such behavior:

- When specimen b is heated to higher and higher temperatures as deformation progresses, with its strength decreasing as x is increased further after the maximum value of stress.
- In compression testing of brittle materials, such as ceramics, when the specimen begins to fracture.
- If the material is susceptible to thermal softening, then it can display such behavior with a sufficiently high strain rate.

2.63 In a disk test performed on a specimen 40-mm in diameter and 5 m thick, the specimen fractures at a stress of 500 MPa. What was the load on the disk at fracture?

Equation (2.20) is used to solve this problem. Noting that $\sigma = 500$ MPa, $d = 40$ mm $= 0.04$ m, and $t = 5$ mm $= 0.005$ m, we can write

$$\sigma = \frac{P}{\pi dt} \quad \Rightarrow \quad P = \frac{\sigma \pi dt}{2}$$

Therefore

$$P = \frac{(500 \times 10^6)\pi(0.04)(0.005)}{2} = 157\text{ kN}.$$

2.64 In Fig. 2.32a, let the tensile and compressive residual stresses both be 10,000 psi and the modulus of elasticity of the material be 30×10^6 psi, with a modulus of resilience of 30 in.-lb/in3. If the original length in diagram (a) is 20 in., what should be the stretched length in diagram (b) so that, when unloaded, the strip will be free of residual stresses?

Note that the yield stress can be obtained from Eq. (2.5) on p. 31 as

$$\text{Mod. of Resilience} = \text{MR} = \frac{Y^2}{2E}$$

Thus,

$$Y = \sqrt{2(MR)E} = \sqrt{2(30)(30 \times 10^6)}$$

or $Y = 42,430$ psi. Using Eq. (2.32), the strain required to relieve the residual stress is:

$$\epsilon = \frac{\sigma_e}{E} + \frac{Y}{E} = \frac{10,000}{30 \times 10^6} + \frac{42,430}{30 \times 10^6} = 0.00175$$

Therefore,

$$\epsilon = \ln \left(\frac{l_f}{l_o} \right) = \ln \left(\frac{l_f}{20\text{ in.}} \right) = 0.00175$$

Therefore, $l_f = 20.035$ in.

2.65 Show that you can take a bent bar made of an elastic, perfectly plastic material and straighten it by stretching it into the plastic range. (Hint: Observe the events shown in Fig. 2.32.)

The series of events that takes place in straightening a bent bar by stretching it can be visualized by starting with a stress distribution as in Fig. 2.32a on p. 61, which would represent the unbending of a bent section. As we apply tension, we algebraically add a uniform tensile stress to this stress distribution. Note that the change in the stresses is the same as that depicted in Fig. 2.32d, namely, the tensile stress...
increases and reaches the yield stress, \(Y \). The compressive stress is first reduced in magnitude, then becomes tensile. Eventually, the whole cross section reaches the constant yield stress, \(Y \). Because we now have a uniform stress distribution throughout its thickness, the bar becomes straight and remains straight upon unloading.

2.66 A bar 1 m long is bent and then stress relieved. The radius of curvature to the neutral axis is 0.50 m. The bar is 30 mm thick and is made of an elastic, perfectly plastic material with \(Y = 600 \) MPa and \(E = 200 \) GPa. Calculate the length to which this bar should be stretched so that, after unloading, it will become and remain straight.

When the curved bar becomes straight, the engineering strain it undergoes is given by the expression

\[
e = \frac{t}{2\rho}
\]

where \(t \) is the thickness and \(\rho \) is the radius to the neutral axis. Hence in this case,

\[
e = \left(\frac{0.030}{2(0.50)} \right) = 0.03
\]

Since \(Y = 600 \) MPa and \(E = 200 \) GPa, we find that the elastic limit for this material is at an elastic strain of

\[
e = \frac{Y}{E} = \frac{600 \text{ MPa}}{200 \text{ GPa}} = 0.003
\]

which is much smaller than 0.05. Following the description in Answer 2.65 above, we find that the strain required to straighten the bar is

\[
e = (2)(0.003) = 0.006
\]

or

\[
l_f - l_o = 0.006 \rightarrow l_f = 0.006l_o + l_o
\]

or \(l_f = 1.006 \) m.

2.67 Assume that a material with a uniaxial yield stress \(Y \) yields under a stress state of principal stresses \(\sigma_1, \sigma_2, \sigma_3 \), where \(\sigma_1 > \sigma_2 > \sigma_3 \). Show that the superposition of a hydrostatic stress, \(p \), on this system (such as placing the specimen in a chamber pressurized with a liquid) does not affect yielding. In other words, the material will still yield according to yield criteria.

Let’s consider the distortion-energy criterion, although the same derivation could be performed with the maximum shear stress criterion as well. Equation (2.37) on p. 64 gives

\[
(\sigma_1 - \sigma_2)^2 + (\sigma_2 - \sigma_3)^2 + (\sigma_3 - \sigma_1)^2 = 2Y^2
\]

Now consider a new stress state where the principal stresses are

\[
\begin{align*}
\sigma_1' &= \sigma_1 + p \\
\sigma_2' &= \sigma_2 + p \\
\sigma_3' &= \sigma_3 + p
\end{align*}
\]

which represents a new loading with an additional hydrostatic pressure, \(p \). The distortion-energy criterion for this stress state is

\[
(\sigma_1' - \sigma_2')^2 + (\sigma_2' - \sigma_3')^2 + (\sigma_3' - \sigma_1')^2 = 2Y^2
\]

or

\[
2Y^2 = ([(\sigma_1 + p) - (\sigma_2 + p)]^2 + [(\sigma_2 + p) - (\sigma_3 + p)]^2 + [(\sigma_3 + p) - (\sigma_1 + p)]^2
\]

which can be simplified as

\[
(\sigma_1 - \sigma_2)^2 + (\sigma_2 - \sigma_3)^2 + (\sigma_3 - \sigma_1)^2 = 2Y^2
\]

which is the original yield criterion. Hence, the yield criterion is unaffected by the superposition of a hydrostatic pressure.

2.68 Give two different and specific examples in which the maximum-shear-stress and the distortion-energy criteria give the same answer.

In order to obtain the same answer for the two yield criteria, we refer to Fig. 2.36 on p. 67 for plane stress and note the coordinates at which the two diagrams meet. Examples are: simple tension, simple compression, equal biaxial tension, and equal biaxial compression. Thus, acceptable answers would include (a) wire rope, as used on a crane to lift loads; (b) spherical pressure vessels, including balloons and gas storage tanks, and (c) shrink fits.
2.69 A thin-walled spherical shell with a yield stress \(Y \) is subjected to an internal pressure \(p \). With appropriate equations, show whether or not the pressure required to yield this shell depends on the particular yield criterion used.

Here we have a state of plane stress with equal biaxial tension. The answer to Problem 2.68 leads one to immediately conclude that both the maximum shear stress and distortion energy criteria will give the same results. We will now demonstrate this more rigorously. The principal membrane stresses are given by

\[
\sigma_1 = \sigma_2 = \frac{pr}{2t}
\]

and

\[
\sigma_3 = 0
\]

Using the maximum shear-stress criterion, we find that

\[
\sigma_1 - 0 = Y
\]

hence

\[
p = \frac{2tY}{r}
\]

Using the distortion-energy criterion, we have

\[
(0 - 0)^2 + (\sigma_2 - 0)^2 + (0 - \sigma_1)^2 = 2Y^2
\]

Since \(\sigma_1 = \sigma_2 \), then this gives \(\sigma_1 = \sigma_2 = Y \), and the same expression is obtained for pressure.

2.70 Show that, according to the distortion-energy criterion, the yield stress in plane strain is 1.15\(Y \) where \(Y \) is the uniaxial yield stress of the material.

A plane-strain condition is shown in Fig. 2.35d on p. 67, where \(\sigma_1 \) is the yield stress of the material in plane strain (\(Y' \)), \(\sigma_3 \) is zero, and \(\epsilon_2 = 0 \). From Eq. 2.43b on p. 68, we find that \(\sigma_2 = \sigma_1/2 \). Substituting these into the distortion-energy criterion given by Eq. (2.37) on p. 64,

\[
\left(\sigma_1 - \frac{\sigma_1}{2} \right)^2 + \left(\frac{\sigma_1}{2} - 0 \right)^2 + (0 - \sigma_1)^2 = 2Y^2
\]

and

\[
\frac{3\sigma_1^2}{2} = 2Y^2
\]

hence

\[
\sigma_1 = \frac{2}{\sqrt{3}} Y \approx 1.15Y
\]

2.71 What would be the answer to Problem 2.70 if the maximum-shear-stress criterion were used?

Because \(\sigma_2 \) is an intermediate stress and using Eq. (2.36), the answer would be

\[
\sigma_1 - 0 = Y
\]

hence the yield stress in plane strain will be equal to the uniaxial yield stress, \(Y \).

2.72 A closed-end, thin-walled cylinder of original length \(l \), thickness \(t \), and internal radius \(r \) is subjected to an internal pressure \(p \). Using the generalized Hooke’s law equations, show the change, if any, that occurs in the length of this cylinder when it is pressurized. Let \(\nu = 0.33 \).

A closed-end, thin-walled cylinder under internal pressure is subjected to the following principal stresses:

\[
\sigma_1 = \frac{pr}{2t}; \quad \sigma_2 = \frac{pr}{t}; \quad \sigma_3 = 0
\]

where the subscript 1 is the longitudinal direction, 2 is the hoop direction, and 3 is the thickness direction. From Hooke’s law given by Eq. (2.33) on p. 63,

\[
\epsilon_1 = \frac{1}{E} \left[\sigma_1 - \nu (\sigma_2 + \sigma_3) \right] = \frac{1}{E} \left[\frac{pr}{2t} - \frac{1}{3} \left(\frac{pr}{t} + 0 \right) \right] = \frac{pr}{6tE}
\]

Since all the quantities are positive (note that in order to produce a tensile membrane stress, the pressure is positive as well), the longitudinal strain is finite and positive. Thus the cylinder becomes longer when pressurized, as it can also be deduced intuitively.

2.73 A round, thin-walled tube is subjected to tension in the elastic range. Show that both the thickness and the diameter of the tube decrease as tension increases.

The stress state in this case is \(\sigma_1, \sigma_2 = \sigma_3 = 0 \). From the generalized Hooke’s law equations given by Eq. (2.33) on p. 63, and denoting the axial direction as 1, the hoop direction as 2, and the radial direction as 3, we have for the hoop strain:

\[
\epsilon_2 = \frac{1}{E} [\sigma_2 - \nu (\sigma_1 + \sigma_3)] = \frac{\nu \sigma_1}{E}
\]
Therefore, the diameter is negative for a tensile (positive) value of \(\sigma_1 \). For the radial strain, the generalized Hooke’s law gives

\[
\epsilon_3 = \frac{1}{E} \left[\sigma_3 - \nu (\sigma_1 + \sigma_2) \right] = -\frac{\nu \sigma_1}{E}
\]

Therefore, the radial strain is also negative and the wall becomes thinner for a positive value of \(\sigma_1 \).

2.74 Take a long cylindrical balloon and, with a thin felt-tip pen, mark a small square on it. What will be the shape of this square after you blow up the balloon: (1) a larger square, (2) a rectangle, with its long axis in the circumferential directions, (3) a rectangle, with its long axis in the longitudinal direction, or (4) an ellipse? Perform this experiment and, based on your observations, explain the results, using appropriate equations. Assume that the material the balloon is made of is perfectly elastic and isotropic, and that this situation represents a thin-walled closed-end cylinder under internal pressure.

This is a simple graphic way of illustrating the generalized Hooke’s law equations. A balloon is a readily available and economical method of demonstrating these stress states. It is also encouraged to assign the students the task of predicting the shape numerically; an example of a valuable experiment involves partially inflating the balloon, drawing the square, then expanding it further and having the students predict the dimensions of the square.

Although not as readily available, a rubber tube can be used to demonstrate the effects of torsion in a similar manner.

2.75 Take a cubic piece of metal with a side length \(l_o \) and deform it plastically to the shape of a rectangular parallelepiped of dimensions \(l_1 \), \(l_2 \), and \(l_3 \). Assuming that the material is rigid and perfectly plastic, show that volume constancy requires that the following expression be satisfied: \(\epsilon_1 + \epsilon_2 + \epsilon_3 = 0 \).

The initial volume and the final volume are constant, so that

\[
l_1 l_2 l_3 \rho_o = l_1 l_2 l_3 \rho_f \Rightarrow \frac{l_1 l_2 l_3}{l_1 l_2 l_3} = 1
\]

Taking the natural log of both sides,

\[
\ln \left(\frac{l_1 l_2 l_3}{l_1 l_2 l_3} \right) = \ln(1) = 0
\]

since \(\ln(AB) = \ln(A) + \ln(B) \),

\[
\ln \left(\frac{l_1}{l_1} \right) + \ln \left(\frac{l_2}{l_2} \right) + \ln \left(\frac{l_3}{l_3} \right) = 0
\]

From the definition of true strain given by Eq. (2.9) on p. 35, \(\ln \left(\frac{l_1}{l_0} \right) = \epsilon_1 \), etc., so that

\[
\epsilon_1 + \epsilon_2 + \epsilon_3 = 0.
\]

2.76 What is the diameter of an originally 30-mm-diameter solid steel ball when it is subjected to a hydrostatic pressure of 5 GPa?

From Eq. (2.46) on p. 68 and noting that, for this case, all three strains are equal and all three stresses are equal in magnitude,

\[
3 \epsilon = \left(\frac{1 - 2 \nu}{E} \right) (-3p)
\]

where \(p \) is the hydrostatic pressure. Thus, from Table 2.1 on p. 32 we take values for steel of \(\nu = 0.3 \) and \(E = 200 \) GPa, so that

\[
\epsilon = \left(\frac{1 - 2 \nu}{E} \right) (-p) = \left(\frac{1 - 0.6}{200} \right) (-5)
\]

or \(\epsilon = -0.01 \). Therefore

\[
\ln \left(\frac{D_f}{D_o} \right) = -0.01
\]

Solving for \(D_f \),

\[
D_f = D_o e^{-0.01} = (20)e^{-0.01} = 19.8 \text{ mm}
\]

2.77 Determine the effective stress and effective strain in plane-strain compression according to the distortion-energy criterion.

Referring to Fig. 2.35d on p. 67 we note that, for this case, \(\sigma_3 = 0 \) and \(\sigma_2 = \sigma_1/2 \), as can be seen from Eq. (2.44) on p. 68. According to the distortion-energy criterion and referring to Eq. (2.52) on p. 69 for effective stress, we find
that
\[\bar{\sigma} = \frac{1}{\sqrt{2}} \left[(\sigma_1 - \frac{\sigma_1}{2})^2 + (\frac{\sigma_1}{2})^2 + (\sigma_1)^2 \right]^{1/2} \]
\[= \frac{1}{\sqrt{2}} \left(\frac{1}{4} + \frac{1}{4} + 1 \right)^{1/2} \sigma_1 \]
\[= \frac{1}{\sqrt{2}} \left(\frac{\sqrt{3}}{\sqrt{2}} \right) \sigma_1 = \frac{\sqrt{3}}{2} \sigma_1 \]

Note that for this case \(\epsilon_3 = 0 \). Since volume constancy is maintained during plastic deformation, we also have \(\epsilon_3 = -\epsilon_1 \). Substituting these into Eq. (2.54), the effective strain is found to be
\[\bar{\epsilon} = \left(\frac{2}{\sqrt{3}} \right) \epsilon_1 \]

2.78 (a) Calculate the work done in expanding a 2-mm-thick spherical shell from a diameter of 100 mm to 140 mm, where the shell is made of a material for which \(\sigma = 200 + 50 \epsilon^{0.5} \) MPa. (b) Does your answer depend on the particular yield criterion used? Explain.

For this case, the membrane stresses are given by
\[\sigma_1 = \sigma_2 = \frac{pt}{2t} \]
and the strains are
\[\epsilon_1 = \epsilon_2 = \ln \left(\frac{r_f}{r_o} \right) \]

Note that we have a balanced (or equal) biaxial state of plane stress. Thus, the specific energy (for a perfectly-plastic material) will, according to either yield criteria, be
\[u = 2\sigma_1 \epsilon_1 = 2Y \ln \left(\frac{r_f}{r_o} \right) \]

The work done will be
\[W = (\text{Volume})(u) \]
\[= (4\pi r_o^2 t_o) \left[2Y \ln \left(\frac{r_f}{r_o} \right) \right] \]
\[= 8\pi Y r_o^2 t_o \ln \left(\frac{r_f}{r_o} \right) \]

Using the pressure-volume method of work, we begin with the formula
\[W = \int p \, dV \]

where \(V \) is the volume of the sphere. We integrate this equation between the limits \(V_o \) and \(V_f \), noting that
\[p = \frac{2Y}{r} \]
and
\[V = \frac{4\pi r^3}{3} \]
so that
\[dV = 4\pi r^2 \, dr \]

Also, from volume constancy, we have
\[t = \frac{r_o^2 (r_f - r_o)}{r_f^3} \]

Combining these expressions, we obtain
\[W = 8\pi Y r_o^2 t_o \int_{r_o}^{r_f} \frac{dr}{r} = 8\pi Y r_o^2 t_o \ln \left(\frac{r_f}{r_o} \right) \]

which is the same expression obtained earlier. To obtain a numerical answer to this problem, note that \(Y \) should be replaced with an average value \(\bar{Y} \). Also note that \(\epsilon_1 = \epsilon_2 = \ln(140/100) = 0.336 \). Thus,
\[\bar{Y} = 200 + \frac{50(0.336)^{1.5}}{1.5} = 206 \text{ MPa} \]

Hence the work done is
\[W = 8\pi Y r_o^2 t_o \ln \left(\frac{r_f}{r_o} \right) \]
\[= 8\pi (206 \times 10^6)(0.1)^2(0.001) \ln(70/50) \]
\[= 17.4 \text{kN-m} \]

The yield criterion used does not matter because this is equal biaxial tension; see the answer to Problem 2.68.

2.79 A cylindrical slug that has a diameter of 1 in. and is 1 in. high is placed at the center of a 2-in.-diameter cavity in a rigid die. (See the accompanying figure.) The slug is surrounded by a compressible matrix, the pressure of which is given by the relation
\[p_m = 40,000 \frac{\Delta V}{V_{om}} \text{ psi} \]
where \(m \) denotes the matrix and \(V_{om} \) is the original volume of the compressible matrix. Both the slug and the matrix are being compressed by a piston and without any friction. The initial pressure on the matrix is zero, and the slug material has the true-stress-true-strain curve of \(\sigma = 15,000 \epsilon^{0.4} \).
Obtain an expression for the force F versus piston travel d up to $d = 0.5$ in.

The total force, F, on the piston will be

$$F = F_w + F_m,$$

where the subscript w denotes the workpiece and m the matrix. As d increases, the matrix pressure increases, thus subjecting the slug to transverse compressive stresses on its circumference. Hence the slug will be subjected to triaxial compressive stresses, with $\sigma_2 = \sigma_3$. Using the maximum shear-stress criterion for simplicity, we have

$$\sigma_1 = \sigma + \sigma_2$$

where σ_1 is the required compressive stress on the slug, σ is the flow stress of the slug material corresponding to a given strain, and given as $\sigma = 15,000 \epsilon^{0.4}$, and σ_2 is the compressive stress due to matrix pressure. Let’s now determine the matrix pressure in terms of d.

The volume of the slug is equal to $\pi/4$ and the volume of the cavity when $d = 0$ is π. Hence the original volume of the matrix is $V_{om} = \frac{3}{4} \pi$. The volume of the matrix at any value of d is then

$$V_m = \pi (1 - d) - \frac{\pi}{4} = \pi \left(\frac{3}{4} - d \right) \text{ in}^3,$$

from which we obtain

$$\frac{\Delta V}{V_{om}} = \frac{V_{om} - V_m}{V_{om}} = \frac{4}{3} d.$$

Note that when $d = \frac{3}{4}$ in., the volume of the matrix becomes zero. The matrix pressure, hence σ_2, is now given by

$$\sigma_2 = \frac{4(40,000)}{3} d - \frac{160,000}{3} d \text{ (psi)}$$

The absolute value of the true strain in the slug is given by

$$\epsilon = \ln \frac{1}{1 - d},$$

with which we can determine the value of σ for any d. The cross-sectional area of the workpiece at any d is

$$A_w = \frac{\pi}{4(1 - d)} \text{ in}^2$$

and that of the matrix is

$$A_m = \pi - \frac{\pi}{4(1 - d)} \text{ in}^2$$

The required compressive stress on the slug is

$$\sigma_1 = \sigma + \sigma_2 = \sigma + \frac{160,000}{3} d.$$

We may now write the total force on the piston as

$$F = A_w \left(\sigma + \frac{160,000}{3} d \right) + A_m \frac{160,000}{3} d \text{ lb.}$$

The following data gives some numerical results:

<table>
<thead>
<tr>
<th>d (in.)</th>
<th>A_w (in.2)</th>
<th>ϵ</th>
<th>σ (psi)</th>
<th>F (lb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>0.872</td>
<td>0.105</td>
<td>6089</td>
<td>22,070</td>
</tr>
<tr>
<td>0.2</td>
<td>0.98</td>
<td>0.223</td>
<td>8230</td>
<td>41,590</td>
</tr>
<tr>
<td>0.3</td>
<td>1.121</td>
<td>0.357</td>
<td>9934</td>
<td>61,410</td>
</tr>
<tr>
<td>0.4</td>
<td>1.31</td>
<td>0.510</td>
<td>11,460</td>
<td>82,030</td>
</tr>
<tr>
<td>0.5</td>
<td>1.571</td>
<td>0.692</td>
<td>12,950</td>
<td>104,200</td>
</tr>
</tbody>
</table>

And the following plot shows the desired results.
2.80 A specimen in the shape of a cube 20 mm on each side is being compressed without friction in a die cavity, as shown in Fig. 2.35d, where the width of the groove is 15 mm. Assume that the linearly strain-hardening material has the true-stress-true-strain curve given by \(\sigma = 70 + 30 \epsilon \) MPa. Calculate the compressive force required when the height of the specimen is at 3 mm, according to both yield criteria.

We note that the volume of the specimen is constant and can be expressed as

\[
(20)(20)(20) = (h)(x)(x)
\]

where \(x \) is the lateral dimensions assuming the specimen expands uniformly during compression. Since \(h = 3 \) mm, we have \(x = 51.6 \) mm. Thus, the specimen touches the walls and hence this becomes a plane-strain problem (see Fig. 2.35d on p. 67). The absolute value of the true strain is

\[
\epsilon = \ln \left(\frac{20}{3} \right) = 1.90
\]

We can now determine the flow stress, \(Y_f \), of the material at this strain as

\[
Y_f = 70 + 30(1.90) = 127 \text{ MPa}
\]

The cross-sectional area on which the force is acting is

\[
\text{Area} = \frac{(20)(20)(20)}{3} = 2667 \text{ mm}^2
\]

According to the maximum shear-stress criterion, we have \(\sigma_1 = Y_f \), and thus

\[
\text{Force} = (127)(2667) = 338 \text{ kN}
\]

According to the distortion energy criterion, we have \(\sigma_1 = 1.15Y_f \), or

\[
\text{Force} = (1.15)(338) = 389 \text{ kN}.
\]

2.81 Obtain expressions for the specific energy for a material for each of the stress-strain curves shown in Fig. 2.7, similar to those shown in Section 2.12.

Equation (2.59) on p. 71 gives the specific energy as

\[
u = \int_0^{\epsilon_f} \sigma \, d\epsilon
\]

(a) For a perfectly-elastic material as shown in Fig. 2.7a on p. 40, this expression becomes

\[
u = \int_0^{\epsilon_f} E\epsilon \, d\epsilon = E \left(\frac{\epsilon^2}{2} \right) _0^{\epsilon_f} = \frac{E\epsilon_f^2}{2}
\]

(b) For a rigid, perfectly-plastic material as shown in Fig. 2.7b, this is

\[
u = \int_0^{\epsilon_f} Y \, d\epsilon = Y \left(\epsilon_f \right) _0^1 = Y\epsilon_f
\]

(c) For an elastic, perfectly plastic material, this is identical to an elastic material for \(\epsilon_1 < Y/E \), and for \(\epsilon_1 > Y/E \) it is

\[
u = \int_0^{\epsilon_1} \sigma \, d\epsilon = \int_0^{Y/E} E\epsilon \, d\epsilon + \int_{Y/E}^{\epsilon_1} Y \, d\epsilon
\]

\[
= E \left(\frac{Y}{E} \right) ^2 + Y \left(\epsilon_1 - \frac{Y}{E} \right)
\]

\[
= \frac{Y^2}{2E} + Ye_1 - \frac{Y^2}{E} = Y \left(\epsilon_1 - \frac{Y}{2E} \right)
\]

(d) For a rigid, linearly strain hardening material, the specific energy is

\[
u = \int_0^{\epsilon_f} (Y + E_p\epsilon) \, d\epsilon = Ye_1 + \frac{E_P\epsilon_f^2}{2}
\]

(e) For an elastic, linear strain hardening material, the specific energy is identical to an elastic material for \(\epsilon_1 < Y/E \) and for \(\epsilon_1 > Y/E \) it is

\[
u = \int_0^{\epsilon_1} \left[Y + E_p \left(\epsilon - \frac{Y}{E} \right) \right] \, d\epsilon
\]

\[
= E_p \left[Y \left(1 - \frac{E_p}{E} \right) + E_p\epsilon \right] \, d\epsilon
\]

\[
= Ye_1 + \frac{E_p\epsilon_f^2}{2}
\]

2.82 A material with a yield stress of 70 MPa is subjected to three principal (normal) stresses of \(\sigma_1, \sigma_2 = 0 \), and \(\sigma_3 = -\sigma_1/2 \). What is the value of \(\sigma_1 \) when the metal yields according to the von Mises criterion? What if \(\sigma_2 = \sigma_1/3 \)?

The distortion-energy criterion, given by Eq. (2.37) on p. 64, is

\[
\left(\sigma_1 - \sigma_2 \right)^2 + \left(\sigma_2 - \sigma_3 \right)^2 + \left(\sigma_3 - \sigma_1 \right)^2 = 2Y^2
\]
Substituting \(Y = 70 \text{ MPa} \) and \(\sigma_1, \sigma_2 = 0 \) and \(\sigma_3 = -\sigma_1/2 \), we have

\[
2(70)^2 = (\sigma_1)^2 + \left(-\frac{\sigma_1}{2} - \sigma_1\right)^2
\]

thus,

\[
\sigma_1 = 52.9 \text{ MPa}
\]

If \(Y = 70 \text{ MPa} \) and \(\sigma_1, \sigma_2 = \sigma_1/3 \) and \(\sigma_3 = -\sigma_1/2 \) is the stress state, then

\[
2(70)^2 = \left(\sigma_1 - \frac{\sigma_1}{3}\right)^2 + \left(\frac{\sigma_1}{3} - \frac{\sigma_1}{2}\right)^2
+ \left(-\frac{\sigma_1}{2} - \sigma_1\right)^2 = 2.72\sigma_1^2
\]

Thus, \(\sigma_1 = 60.0 \text{ MPa} \). Therefore, the stress level to initiate yielding actually increases when \(\sigma_2 \) is increased.

2.83 A steel plate has the dimensions 100 mm \(\times \) 100 mm \(\times \) 5 mm thick. It is subjected to biaxial tension of \(\sigma_1 = \sigma_2 \), with the stress in the thickness direction of \(\sigma_3 = 0 \). What is the largest possible change in volume at yielding, using the von Mises criterion? What would this change in volume be if the plate were made of copper?

From Table 2.1 on p. 32, it is noted that for steel we can use \(E = 200 \text{ GPa} \) and \(\nu = 0.30 \). For a stress state of \(\sigma_1 = \sigma_2 \) and \(\sigma_3 = 0 \), the von Mises criterion predicts that at yielding,

\[
(\sigma_1 - \sigma_2)^2 + (\sigma_2 - \sigma_3)^2 + (\sigma_3 - \sigma_1)^2 = 2Y^2
\]

or

\[
(\sigma_1 - \sigma_1)^2 + (\sigma_2 - 0)^2 + (0 - \sigma_1)^2 = 2Y^2
\]

Resulting in \(\sigma_1 = Y \). Equation (2.47) gives:

\[
\Delta = \frac{1-2\nu}{E} (\sigma_x + \sigma_y + \sigma_z)
= \frac{1-2(0.3)}{200 \text{ GPa}} [(350 \text{ MPa}) + (350 \text{ MPa})]
= 0.0014
\]

Since the original volume is \((100)(100)(5) = 50,000 \text{ mm}^3 \), the stressed volume is 50,070 mm\(^3\), or the volume change is 70 mm\(^3\).

For copper, we have \(E = 125 \text{ GPa} \) and \(\nu = 0.34 \). Following the same derivation, the dilatation for copper is 0.0006144; the stressed volume is 50,031 mm\(^3\) and thus the change in volume is 31 mm\(^3\).

2.84 A 50-mm-wide, 1-mm-thick strip is rolled to a final thickness of 0.5 mm. It is noted that the strip has increased in width to 52 mm. What is the strain in the rolling direction?

The thickness strain is

\[
\epsilon_t = \ln \left(\frac{l}{l_0} \right) = \ln \left(\frac{0.5 \text{ mm}}{1 \text{ mm}} \right) = -0.693
\]

The width strain is

\[
\epsilon_w = \ln \left(\frac{l}{l_0} \right) = \ln \left(\frac{52 \text{ mm}}{50 \text{ mm}} \right) = 0.0392
\]

Therefore, from Eq. (2.48), the strain in the rolling (or longitudinal) direction is \(\epsilon_t = 0 - 0.0392 + 0.693 = 0.654 \).

2.85 An aluminum alloy yields at a stress of 50 MPa in uniaxial tension. If this material is subjected to the stresses \(\sigma_1 = 25 \text{ MPa} \), \(\sigma_2 = 15 \text{ MPa} \) and \(\sigma_3 = -26 \text{ MPa} \), will it yield? Explain.

According to the maximum shear-stress criterion, the effective stress is given by Eq. (2.51) on p. 69 as:

\[
\bar{\sigma} = \sigma_1 - \sigma_3 = 25 - (-26) = 51 \text{ MPa}
\]

However, according to the distortion-energy criterion, the effective stress is given by Eq. (2.52) on p. 69 as:

\[
\bar{\sigma} = \frac{1}{\sqrt{2}} \sqrt{(\sigma_1 - \sigma_2)^2 + (\sigma_2 - \sigma_3)^2 + (\sigma_3 - \sigma_1)^2}
\]

or

\[
\bar{\sigma} = \sqrt{\frac{(25 - 15)^2 + (15 + 26)^2 + (-26 - 25)^2}{2}}
\]

or \(\bar{\sigma} = 46.8 \text{ MPa} \). Therefore, the effective stress is higher than the yield stress for the maximum shear-stress criterion, and lower than the yield stress for the distortion-energy criterion. It is impossible to state whether or not the material will yield at this stress state. An accurate statement would be that yielding is imminent, if it is not already occurring.

2.86 A cylindrical specimen 1-in. in diameter and 1-in. high is being compressed by dropping a weight of 200 lb on it from a certain height. After deformation, it is found that the temperature rise in the specimen is 300 \(^\circ\)F. Assuming...
no heat loss and no friction, calculate the final height of the specimen, using the following data for the material: $K = 30,000$ psi, $n = 0.5$, density $= 0.1$ lb/in3, and specific heat $= 0.3$ BTU/lb.°F.

This problem uses the same approach as in Example 2.8. The volume of the specimen is

$$V = \frac{\pi d^2h}{4} = \frac{\pi(1)^2(1)}{4} = 0.785 \text{ in}^3$$

The expression for heat is given by

$$\text{Heat} = c_p \rho V \Delta T = (0.3)(0.1)(0.785)(300)(778) = 5500 \text{ft-lb} = 66,000 \text{ in-lb}.$$ where the unit conversion $778 \text{ ft-lb} = 1 \text{ BTU}$ has been applied. Since, ideally,

$$\text{Heat} = \text{Work} = Vu = \frac{KV}{n+1} = \frac{0.785(30,000)e^{1.5}}{1.5}$$

Solving for e,

$$e^{1.5} = \frac{1.5(66,000)}{(0.785)(30,000)} = 4.20$$

Therefore, $e = 2.60$. Using absolute values, we have

$$\ln \left(\frac{h_o}{h_f} \right) = \ln \left(\frac{1 \text{ in.}}{h_f} \right) = 2.60$$

Solving for h_f gives $h_f = 0.074 \text{ in.}$

2.87 A solid cylindrical specimen 100-mm high is compressed to a final height of 40 mm in two steps between frictionless platens; after the first step the cylinder is 70 mm high. Calculate the engineering strain and the true strain for both steps, compare them, and comment on your observations.

In the first step, we note that $h_o = 100$ mm and $h_1 = 70$ mm, so that from Eq. (2.1) on p. 30,

$$e_1 = \frac{h_1 - h_o}{h_o} = \frac{70 - 100}{100} = -0.300$$

and from Eq. (2.9) on p. 35,

$$\epsilon_1 = \ln \left(\frac{h_1}{h_o} \right) = \ln \left(\frac{70}{100} \right) = -0.357$$

Similarly, for the second step where $h_1 = 70$ mm and $h_2 = 40$ mm,

$$e_2 = \frac{h_2 - h_1}{h_1} = \frac{40 - 70}{70} = -0.429$$

$$e_2 = \ln \left(\frac{h_2}{h_1} \right) = \ln \left(\frac{40}{70} \right) = -0.560$$

Note that if the operation were conducted in one step, the following would result:

$$e = \frac{h_2 - h_o}{h_o} = \frac{40 - 100}{100} = -0.6$$

$$e = \ln \left(\frac{h_2}{h_o} \right) = \ln \left(\frac{40}{100} \right) = -0.916$$

As was shown in Problem 2.46, this indicates that the true strains are additive while the engineering strains are not.

2.88 Assume that the specimen in Problem 2.87 has an initial diameter of 80 mm and is made of 1100-O aluminum. Determine the load required for each step.

From volume constancy, we calculate

$$d_1 = d_o \sqrt{\frac{h_o}{h_1}} = 80 \sqrt{\frac{100}{70}} = 95.6 \text{ mm}$$

$$d_2 = d_o \sqrt{\frac{h_o}{h_2}} = 80 \sqrt{\frac{100}{40}} = 126.5 \text{ mm}$$

Based on these diameters the cross-sectional area at the steps is calculated as:

$$A_1 = \frac{\pi}{4} d_1^2 = 7181 \text{ mm}^2$$

$$A_2 = \frac{\pi}{4} d_2^2 = 12,566 \text{ mm}^2$$

As calculated in Problem 2.87, $e_1 = 0.357$ and $e_{\text{total}} = 0.916$. Note that for 1100-O aluminum, $K = 180$ MPa and $n = 0.20$ (see Table 2.3 on p. 37) so that Eq. (2.11) on p. 35 yields

$$\sigma_1 = 180(0.357)^{0.20} = 146.5 \text{ MPa}$$

$$\sigma_2 = 180(0.916)^{0.20} = 176.9 \text{ Mpa}$$

Therefore, the loads are calculated as:

$$P_1 = \sigma_1 A_1 = (146.5)(7181) = 1050 \text{ kN}$$

$$P_2 = (176.9)(12,566) = 2223 \text{ kN}$$

2.89 Determine the specific energy and actual energy expended for the entire process described in the preceding two problems.

From Eq. (2.60) on p. 71 and using \(\epsilon_{\text{total}} = 0.916 \), \(K = 180 \text{ MPa} \) and \(n = 0.20 \), we have

\[
u = \frac{K \epsilon^{n+1}}{n + 1} = \frac{(180)(0.916)^{1.2}}{1.2} = 135 \text{ MPa}
\]

2.90 A metal has a strain hardening exponent of 0.22. At a true strain of 0.2, the true stress is 20,000 psi. (a) Determine the stress-strain relationship for this material. (b) Determine the ultimate tensile strength for this material.

This solution follows the same approach as in Example 2.1. From Eq. (2.11) on p. 35, and recognizing that \(n = 0.22 \) and \(\sigma = 20,000 \text{ psi} \) for \(\epsilon = 0.20 \),

\[
\sigma = K \epsilon^n \quad \rightarrow \quad 20,000 = K(0.20)^{0.22}
\]

or \(K = 28,500 \text{ psi} \). Therefore, the stress-strain relationship for this material is

\[
\sigma = 28,500 \epsilon^{0.22} \text{ psi}
\]

To determine the ultimate tensile strength for the material, realize that the strain at necking is equal to the strain hardening exponent, or \(\epsilon = n \). Therefore,

\[
\sigma_{\text{ult}} = K (n)^n = 28,500(0.22)^{0.22} = 20,400 \text{ psi}
\]

The cross-sectional area at the onset of necking is obtained from

\[
\ln \left(\frac{A_o}{A_{\text{neck}}} \right) = n = 0.22
\]

Consequently,

\[
A_{\text{neck}} = A_o e^{-0.22}
\]

and the maximum load is

\[
P = \sigma A = \sigma_{\text{ult}} A_{\text{neck}}.
\]

Hence,

\[
P = (20,400)(A_o)e^{-0.22} = 16,370A_o
\]

Since UTS = \(P/A_o \), we have

\[
\text{UTS} = \frac{16,370A_o}{A_o} = 16,370 \text{ psi}
\]

2.91 The area of each face of a metal cube is 400 \text{ mm}^2, and the metal has a shear yield stress, \(k \), of 140 MPa. Compressive loads of 40 kN and 80 kN are applied at different faces (say in the \(x \)- and \(y \)-directions). What must be the compressive load applied to the \(z \)-direction to cause yielding according to the Tresca criterion? Assume a frictionless condition.

Since the area of each face is 400 \text{ mm}^2, the stresses in the \(x \)- and \(y \)-directions are

\[
\sigma_x = -\frac{40,000}{400} = -100 \text{ MPa}
\]

\[
\sigma_y = -\frac{80,000}{400} = -200 \text{ MPa}
\]

where the negative sign indicates that the stresses are compressive. If the Tresca criterion is used, then Eq. (2.36) on p. 64 gives

\[
\sigma_{\max} - \sigma_{\min} = Y = 2k = 280 \text{ MPa}
\]

It is stated that \(\sigma_3 \) is compressive, and is therefore negative. Note that if \(\sigma_3 \) is zero, then the material does not yield because \(\sigma_{\max} - \sigma_{\min} = 0 - (-200) = 200 \text{ MPa} < 280 \text{ MPa} \). Therefore, \(\sigma_3 \) must be lower than \(\sigma_2 \), and is calculated from:

\[
\sigma_{\max} - \sigma_{\min} = \sigma_1 - \sigma_3 = 280 \text{ MPa}
\]

or

\[
\sigma_3 = \sigma_1 - 280 = -100 - 280 = -380 \text{ MPa}
\]

2.92 A tensile force of 9 kN is applied to the ends of a solid bar of 6.35 mm diameter. Under load, the diameter reduces to 5.00 mm. Assuming uniform deformation and volume constancy, (a) determine the engineering stress and strain, (b) determine the true stress and strain, (c) if the original bar had been subjected to a true stress of 345 MPa and the resulting diameter was 5.60 mm, what are the engineering stress and engineering strain for this condition?

First note that, in this case, \(d_o = 6.35 \text{ mm} \), \(d_f = 5.00 \text{ mm} \), \(P = 9000 \text{ N} \), and from volume constancy,

\[
\frac{l_o d_o^2}{l_f d_f^2} = \frac{l_f}{l_o} \rightarrow \frac{l_f}{l_o} = \frac{d_o^2}{d_f^2} = \frac{6.35^2}{5.00^2} = 1.613
\]

The cross-sectional area at the onset of necking is obtained from

\[
\ln \left(\frac{A_o}{A_{\text{neck}}} \right) = n = 0.22
\]

Consequently,

\[
A_{\text{neck}} = A_o e^{-0.22}
\]

and the maximum load is

\[
P = \sigma A = \sigma_{\text{ult}} A_{\text{neck}}.
\]

Hence,

\[
P = (20,400)(A_o)e^{-0.22} = 16,370A_o
\]

Since UTS = \(P/A_o \), we have

\[
\text{UTS} = \frac{16,370A_o}{A_o} = 16,370 \text{ psi}
\]
(a) The engineering stress is calculated from Eq. (2.3) on p. 30 as:

\[\sigma = \frac{P}{A_o} = \frac{9000}{\frac{\pi}{4}(6.35)^2} = 284 \text{ MPa} \]

and the engineering strain is calculated from Eq. (2.1) on p. 30 as:

\[e = \frac{l - l_o}{l_o} = \frac{10 - 5}{5} = 1.613 - 1 = 0.613 \]

(b) The true stress is calculated from Eq. (2.8) on p. 34 as:

\[\sigma = \frac{P}{A} = \frac{9000}{\frac{\pi}{4}(5.00)^2} = 458 \text{ MPa} \]

and the true strain is calculated from Eq. (2.9) on p. 35 as:

\[\epsilon = \ln \left(\frac{l_f}{l_o} \right) = \ln 1.613 = 0.478 \]

(c) If the final diameter is \(d_f = 5.60 \text{ mm} \), then the final area is \(A_f = \frac{\pi}{4} d_f^2 = 24.63 \text{ mm}^2 \). If the true stress is 345 MPa, then \(P = \sigma A_f = (345)(24.63) = 8497 \approx 8500 \text{ N} \)

Therefore, the engineering stress is calculated as before as:

\[\sigma = \frac{P}{A_o} = \frac{8500}{\frac{\pi}{4}(6.35)^2} = 268 \text{ MPa} \]

Similarly, from volume constancy,

\[\frac{l_f}{l_o} = \frac{d_o^2}{d_f^2} = \frac{6.35^2}{5.60^2} = 1.286 \]

Therefore, the engineering strain is

\[e = \frac{l_f}{l_o} - 1 = 1.286 - 1 = 0.286 \]

2.93 Two identical specimens 10-mm in diameter and with test sections 25 mm long are made of 1112 steel. One is in the as-received condition and the other is annealed. What will be the true strain when necking begins, and what will be the elongation of these samples at that instant? What is the ultimate tensile strength for these samples?

This problem uses a similar approach as for Example 2.1. First, we note from Table 2.3 on p. 37 that for cold-rolled 1112 steel, \(K = 760 \text{ MPa} \) and \(n = 0.08 \). Also, the initial cross-sectional area is \(A_o = \frac{\pi}{4}(10)^2 = 78.5 \text{ mm}^2 \). For annealed 1112 steel, \(K = 760 \text{ MPa} \) and \(n = 0.19 \). At necking, \(\epsilon = n \), so that the strain will be \(\epsilon = 0.08 \) for the cold-rolled steel and \(\epsilon = 0.19 \) for the annealed steel. For the cold-rolled steel, the final length is given by Eq. (2.9) on p. 35 as

\[\epsilon = n = \ln \left(\frac{l}{l_o} \right) \]

Solving for \(l \),

\[l = e^n l_o = e^{0.08}(25) = 27.08 \text{ mm} \]

The elongation is, from Eq. (2.6),

\[\text{Elongation} = \frac{l_f - l_o}{l_o} \times 100 = \frac{27.08 - 25}{25} \times 100 \]

or 8.32%. To calculate the ultimate strength, we can write, for the cold-rolled steel,

\[\text{UTS}_{\text{true}} = Kn^n = 760(0.08)^{0.08} = 621 \text{ MPa} \]

As in Example 2.1, we calculate the load at necking as:

\[P = \text{UTS}_{\text{true}} A_o e^{-n} \]

So that

\[\text{UTS} = \frac{P}{A_o} = \frac{\text{UTS}_{\text{true}} A_o e^{-n}}{A_o} = \text{UTS}_{\text{true}} e^{-n} \]

This expression is evaluated as

\[\text{UTS} = (621)e^{-0.08} = 573 \text{ MPa} \]

Repeating these calculations for the annealed specimen yields \(l = 30.23 \text{ mm} \), elongation = 20.9%, and UTS = 458 MPa.

2.94 During the production of a part, a metal with a yield strength of 110 MPa is subjected to a stress state \(\sigma_1, \sigma_2 = \sigma_1/3, \sigma_3 = 0 \). Sketch the Mohr’s circle diagram for this stress state. Determine the stress \(\sigma_2 \) necessary to cause yielding by the maximum shear stress and the von Mises criteria.

For the stress state of \(\sigma_1, \sigma_1/3, 0 \) the following figure the three-dimensional Mohr’s circle:
For the von Mises criterion, Eq. (2.37) on p. 64 gives:

\[2Y^2 = (\sigma_1 - \sigma_2)^2 + (\sigma_2 - \sigma_3)^2 + (\sigma_3 - \sigma_1)^2 \]

\[= (\sigma_1 - \frac{\sigma_1}{3})^2 + (\frac{\sigma_1}{3} - 0)^2 + (0 - \sigma_1)^2 \]

\[= \frac{4}{9}\sigma_1^2 + \frac{1}{9}\sigma_1^2 + \sigma_1^2 = \frac{14}{9}\sigma_1^2 \]

Solving for \(\sigma_1 \) gives \(\sigma_1 = 125 \) MPa. According to the Tresca criterion, Eq. (2.36) on p. 64 on p. 64 gives

\[\sigma_1 - \sigma_3 = \sigma_1 = 0 = Y \]

or \(\sigma_1 = 110 \) MPa.

2.95 Estimate the depth of penetration in a Brinell hardness test using 500-kg load, when the sample is a cold-worked aluminum with a yield stress of 200 MPa.

Note from Fig. 2.24 on p. 55 that for cold-worked aluminum with a yield stress of 200 MPa, the Brinell hardness is around 65 kg/mm\(^2\). From Fig. 2.22 on p. 52, we can estimate the diameter of the indentation from the expression:

\[HB = \frac{2P}{(\pi D)(D - \sqrt{D^2 - d^2})} \]

from which we find that \(d = 3.091 \) mm for \(D = 10 \) mm. To calculate the depth of penetration, consider the following sketch:

Because the radius is 5 mm and one-half the penetration diameter is 1.5 mm, we can obtain \(\alpha \) as

\[\alpha = \sin^{-1} \left(\frac{1.5}{5} \right) = 17.5^\circ \]

The depth of penetration, \(t \), can be obtained from

\[t = 5 - 5 \cos \alpha = 5 - 5 \cos 17.5^\circ = 0.23 \text{ mm} \]

2.96 The following data are taken from a stainless steel tension-test specimen:

<table>
<thead>
<tr>
<th>Load, (P) (lb)</th>
<th>Extension, (\Delta l) (in.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1600</td>
<td>(0)</td>
</tr>
<tr>
<td>2500</td>
<td>(0.02)</td>
</tr>
<tr>
<td>3000</td>
<td>(0.08)</td>
</tr>
<tr>
<td>3600</td>
<td>(0.20)</td>
</tr>
<tr>
<td>4200</td>
<td>(0.40)</td>
</tr>
<tr>
<td>4500</td>
<td>(0.60)</td>
</tr>
<tr>
<td>4600 (max)</td>
<td>(0.86)</td>
</tr>
<tr>
<td>4586 (fracture)</td>
<td>(0.98)</td>
</tr>
</tbody>
</table>

Also, \(A_o = 0.056 \text{ in}^2 \), \(A_f = 0.016 \text{ in}^2 \), \(l_o = 2 \) in. Plot the true stress-true strain curve for the material.

The following are calculated from Eqs. (2.6), (2.9), (2.10), and (2.8) on pp. 33-35:

<table>
<thead>
<tr>
<th>(\Delta l)</th>
<th>(l)</th>
<th>(\epsilon)</th>
<th>(A) (in(^2))</th>
<th>(\sigma) (ksi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2.0</td>
<td>0</td>
<td>0.056</td>
<td>28.5</td>
</tr>
<tr>
<td>0.02</td>
<td>2.02</td>
<td>0.00995</td>
<td>0.0554</td>
<td>45.1</td>
</tr>
<tr>
<td>0.08</td>
<td>2.08</td>
<td>0.0392</td>
<td>0.0538</td>
<td>55.7</td>
</tr>
<tr>
<td>0.2</td>
<td>2.2</td>
<td>0.0953</td>
<td>0.0509</td>
<td>70.7</td>
</tr>
<tr>
<td>0.4</td>
<td>2.4</td>
<td>0.182</td>
<td>0.0467</td>
<td>90.0</td>
</tr>
<tr>
<td>0.6</td>
<td>2.6</td>
<td>0.262</td>
<td>0.0431</td>
<td>104</td>
</tr>
<tr>
<td>0.86</td>
<td>2.86</td>
<td>0.357</td>
<td>0.0392</td>
<td>117</td>
</tr>
<tr>
<td>0.98</td>
<td>2.98</td>
<td>0.399</td>
<td>0.0376</td>
<td>120</td>
</tr>
</tbody>
</table>

The true stress-true strain curve is then plotted as follows:
2.97 A metal is yielding plastically under the stress state shown in the accompanying figure.

![Stress State Diagram]

(a) Label the principal axes according to their proper numerical convention (1, 2, 3).
(b) What is the yield stress using the Tresca criterion?
(c) What if the von Mises criterion is used?
(d) The stress state causes measured strains of \(\varepsilon_1 = 0.4 \) and \(\varepsilon_2 = 0.2 \), with \(\varepsilon_3 \) not being measured. What is the value of \(\varepsilon_3 \)?

(a) Since \(\sigma_1 \geq \sigma_2 \geq \sigma_3 \), then from the figure \(\sigma_1 = 50 \) MPa, \(\sigma_2 = 20 \) MPa and \(\sigma_3 = -40 \) MPa.
(b) The yield stress using the Tresca criterion is given by Eq. (2.36) as

\[
\sigma_{\text{max}} - \sigma_{\text{min}} = Y
\]

So that

\[
Y = 50 \text{ MPa} - (-40 \text{ MPa}) = 90 \text{ MPa}
\]

(c) If the von Mises criterion is used, then Eq. (2.37) on p. 64 gives

\[
\left(\sigma_1 - \sigma_2\right)^a + \left(\sigma_2 - \sigma_3\right)^a + \left(\sigma_3 - \sigma_1\right)^a = C
\]

or

\[
2Y^2 = (50 - 20)^2 + (20 + 40)^2 + (50 + 40)^2
\]

or

\[
2Y^2 = 12,600
\]

which is solved as \(Y = 79.4 \) MPa.
(d) If the material is deforming plastically, then from Eq. (2.48) on p. 69,

\[
\varepsilon_1 + \varepsilon_2 + \varepsilon_3 = 0.4 + 0.2 + \varepsilon_3 = 0
\]

or \(\varepsilon_3 = -0.6 \).

2.98 It has been proposed to modify the von Mises yield criterion as:

\[
(\sigma_1 - \sigma_2)^a + (\sigma_2 - \sigma_3)^a + (\sigma_3 - \sigma_1)^a = C
\]

where \(C \) is a constant and \(a \) is an even integer larger than 2. Plot this yield criterion for \(a = 4 \) and \(a = 12 \), along with the Tresca and von Mises criteria, in plane stress. (Hint: See Fig. 2.36 on p. 67).

For plane stress, one of the stresses, say \(\sigma_3 \), is zero, and the other stresses are \(\sigma_A \) and \(\sigma_B \). The yield criterion is then

\[
(\sigma_A - \sigma_B)^a + (\sigma_B)^a + (\sigma_A)^a = C
\]

For uniaxial tension, \(\sigma_A = Y \) and \(\sigma_B = 0 \) so that \(C = 2Y^a \). These equations are difficult to solve by hand; the following solution was obtained using a mathematical programming package:

![Yield Criteria Diagram]

Note that the solution for \(a = 2 \) (von Mises) and \(a = 4 \) are so close that they cannot be distinguished in the plot. When zoomed into a portion of the curve, one would see that the \(a = 4 \) curve lies between the von Mises curve and the \(a = 12 \) curve.

2.99 Assume that you are asked to give a quiz to students on the contents of this chapter. Prepare three quantitative problems and three qualitative questions, and supply the answers.

By the student. This is a challenging, open-ended question that requires considerable focus and understanding on the part of the student, and has been found to be a very valuable homework problem.